If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x=10=0
We move all terms to the left:
x^2+12x-(10)=0
a = 1; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·1·(-10)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{46}}{2*1}=\frac{-12-2\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{46}}{2*1}=\frac{-12+2\sqrt{46}}{2} $
| X-0.65x=26 | | 30=6t+3 | | 5x+10+3x-15=43 | | x/10+11=-47 | | x^2+12x-10x=0 | | 11+4x=2x+5 | | 8+y2=−9 | | 3.5x+2=14+2x | | 8x+35+7x+10=180 | | 60-40n=60 | | 40x=320(35) | | −2x−3=4x−15 | | -p-p=4p-4p-8 | | 4(1/2x-3)=4(2-3/4x) | | 30t+3=6 | | x+2x+3x+7=6-8 | | (3x-4)+(6x-5)=180 | | 9+4(x-6)=5 | | 9/x-x=0 | | 2(4x-3)=9+3x | | 4(x-12)=-16 | | 4(p-8)=-32+4p | | 5(-2-3)=-33+8n | | 8x-11x-5=13 | | 20+10x-8x+12=10 | | 8(y-2)-2y=4(2y-5) | | -48=5+2w | | 5x-12+3x=4 | | -5x+10–2x=-60 | | X-0.45x=52 | | 8/7+4/y=2 | | 0.15x=40-0.05x |